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We uncover a nontrivial signature of the hierarchical structure of quasidegenerate random directed polymers
(RDPs at zero temperature in (d1)-dimensional lattices. Using a cylindrical geometry with circumference
8<W=512, we study the differences in configurations taken by RDPs forced to pass through points displaced
successively by one unit lattice mesh. The transition between two successive configmaterpseted as an
avalanchg defines an are&. The distribution of moderately sized avalanches is found to be a power law
P(S)dS~S (1*MdS Using a hierarchical formulation based on the length sdal#% (transverse excursion
and the distancaV(?®« between quasidegenerate ground stdteith 0<a<1), we determineu= 2, in
excellent agreement with numerical simulations by a transfer matrix method. This power law is valid up to a
maximum sizeSg,z~ W, There is another population of avalanches that for characteristic sizes b&ygnd
obeysP(S)dS~exd —(9S;,5)%]dS, also confirmed numerically. The first population corresponds to almost
degenerate ground states, providing a direct evidence of “weak replica symmetry breaking,” while the second
population is associated with different optimal states separated by the typical fluct&ffaof a single RDP.
[S1063-651X98)12806-4

PACS numbsg(s): 05.70.Jk, 64.60.Lx, 75.50.Lk, 64.60.Ht

[. INTRODUCTION This turns out to produce a power-law distribution for the
interconnecting avalanches.
Self-organized criticality (SOQ [1] describes out-of- Thus a common property of SOC systems is that they are

equilibrium extended systems driven infinitely slowly, which characterized by a large set of almost equivalent and degen-
respond intermittently with avalanches or bursts of sizes diserate states. This set can be generated by dynamic automata
tributed according to power-law distributions. A close rela-rules, disorder, frustration, or other mechanisms. In addition
tionship between critical phase transitions and a class dP the introduction of a different class of SOC models, our
SOC system§2,3] has been pointed out. Member systems ofresults provide furth_er evidence for the hierarchical structure
this SOC class operate exactly at the critical value of arPf Sets of random directed polyme®®DP9.

underlying critical point. A necessary condition for this to ~ OUr results bear an apparent strong similarity to those
occur is that theorder parameter(often akin to a fluxof a  Préviously obtained for pinned charged density wal&ls
dynamical critical transition be driven infinitely slowly, thus driven interfaces in random mediéi], and elastic manifolds

forcing the control parameter to readjust itself dynamicaIIygcegf?ﬁgeéegamtésgﬁg]' Egr\:‘é?‘:]lggatgitacﬁgée;g%] abgc-an-
around its critical valug3]. y P

. : . .. stant driving forceF at the depinning threshold, and the
Motivated by this correspondence, we introduce a differ- - . ; :

£ SOC model. It be d ibed ilibrium debi nearly critical behavior obtained by a small constant velocity
en modet. It can be described asamilibniumdepin- - yyq%g hased on an argument relating the critical behavior

ning problem wherein a certain type of avalanche separategsF_)Fg andF—F_ . This predictd5—7] a vanishing ex-

Local _ﬁqwllt;rlumds_tates. ThedSL:ccessmSI of etEUIIL)br:‘]um'StatEonent for the avalanche distribution in oufl+1)-
ransitions found n-our model resembies the Denavior Oyinmensional case, which seemingly contradicts our result.

Abelian sandpileg4]. In the latter, each avalanche can beé e giscrepancy stems from the fact that we do not describe
shown to connect two different microscopic metastablehe same regime: the vanishing exponent refers to the exis-
states. Furthermore, its critical state is then characterized bynce of large avalanches of sizes controlled by the system
the complete set of these avalanche-connected metastalfge (or the correlation length when off criticality applies
states. Whereas the set of coexisting metastable stables This corresponds to the second of two identified avalanche
created by the threshold rules of the sandpile automata, th@gimes of our model. In contrast, the present work reveals
many coexisting locakquilibrium states appearing in our the existence of a subdominant power-law distribution of
model emerge from an optiméle., minimum energycon-  avalanches stemming from the hierarchy of almost equiva-
figuration in a quenched random landscape. This disorddent degenerate states. These states do not, however, contrib-
induces the coexistence of an extremely large number of adte to the large-scale behavior and have thus been over-
most equivalent configurations. The resulting closeness itooked in previous work.

energy space leads to a large spread in configuration space. The model is defined in the next section, while in Sec. IlI
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we derive our theoretical predictions for the distribution ofaround a cylinder of circumferend®&/. The polymer is al-
avalanche sizes. These are compared with extensive numelbwed to equilibrate, i.e., take the spatial configuration of
cal simulations in Sec. IV. Our conclusions are found in Secminimum total bond energy. Let us now shift the vertical
V. position of the fixed end points from to y+1 (where the
lattice mesh is taken as unjtyThe polymer is again allowed
to equilibrate to the spatial configuration of minimum en-
ergy. We continue in this fashion in an iterative process,

Consider a RDP on a square lattice oriented at 45° withvhich amounts to controlling the average vertical velocity of
respect to the axis and such that each bond carries a ranthe polymer to a value so small that the time scale to move
dom number, interpreted as an energy. An arbitrary directe@Ver a unit mesh is much larger than any relaxation times.
path (a condition of no backward tuyralong thex direction ~ This guarantees that the polymer always finds the spatial
and of lengthW (in this direction corresponds to the con- configuration of minimum bond energy. Note that the@o-
figuration of a RDP ofW bonds. In the zero-temperature sition of the polymer end points therefore functions as a
version we study here, the equilibrium polymer configurationclock since no other relevant time scales are present.
is the particular directed path on this lattice tkiatthe pres- Figure 1 shows a typical set of optimal configurations for
ence of given boundary conditionsinimizes the sum ofthe & RDP of lengthW=4096 and for 6sy<L=1200. The
W bond energies along it. This simple model, with its greatlymagnifications illustrate the self-affine structure of the RDPs
varied behavior’ has become a valuable tool in the Study @nd the self-similar hierarchical pattern of the local branch-
self-similar surface growth§8], interface fluctuations and ing structure.
depinning[9], the random stirred Burgers equation in fluid
dynamics[10], and the physics of spin glassgdl].

Let us apply a fielch that exerts a force on one of the lll. THEORETICAL PREDICTION
vertical end-point positiong(W) of the polymer. This field OF THE AVALANCHE SIZE DISTRIBUTION
adds a term—hy(W) to the configurational energy of the

polymer given by the sum of random bond energies along itfrom the optimal configuration of a RDP with end points

It is similar to a transverse electric field acting on the_ . X X
._fixed aty,=y,=Vy to the optimal configuration where the
charged head of the polymer. If the other polymer extremltyend points are now at,=y,=y+1 (as shown in Fig. 2

is free, the minimum energy is obtained by lettipng/V) go ' .

L : : We define the size of an avalanche by the @eapanned by
to |nf|n|t_y as the external f|elq term-hy(W) _dlverg_es to the transition from the optimal configuration yto the one
— . This energy always dominates the configuration energ ty+1,i.e.,Sis the area interior to the perimeter formed by
for any reasonable distribution of random bond energies. the uni’or.1 (')’f the two optimal RDP configurations aand

depinning transition thus occurs for the value 0" of the !
. ; y+1 and the two vertical segment§,0,y);(0,y+1)) and
control parameteln. Mezard[12] has shown that holding the (W.y):(W,y+1)) (see Fig. 2 What do we know about the

other end point fixed resultgn the small field limi} in ex- distributi .

. . ._distribution of these avalanche sizes?
tremely jerky displacement of the charged head as a function
of the field strengtth. The position of the charged head is
stationary for large ranges of applied field values and then
changes suddenly. At the field values where these transitions )
(or avalanchesoccur, the susceptibility attains large values. Clearly, the structure of the ensemble of the optimal
These susceptibility bursts are reportedly distributed accord®DPs(for all possible end-poiny locations uniquely deter-
ing to a power law[12]. This avalanche response has beenMines the avalanches. For a RDP of lengéhit is known
attributed[12] to a “spin glass phase” with several valleys that the typical transverse excursidhin 1+1 dimensions
of similar energy. It is important to realize that this ava- Scales a¥ ~W" with v=% (see[15] and references thergin
lanche behavior is not SOC as the driving is nonstationaryWWe thus expect that there exists a class of RDP transitions
nothing occurs when the field stays constant and increasingith vertical lengthsY of at least the order of this typical
the field will lead ultimately to the situation where the RDP transverse excursion. The a®apanned by such a transition
is blocked in a fully extended configuration along the firstis therefore proportional t&=WY~W?>? (i.e., the charac-
quadrant bisectrix. This regime is similar to a mode of op-teristic avalanche size The distribution ofY is known to
eration with a slow sweeping of a control paramétis]. behave asymptotically &(Y) ~exd —(Y/W?3)?] [15]. Sub-

The correspondence between depinning transitions aniéfuting for S=WY in P(Y) give us

SOC modeld 3] suggests, in addition to the previous results 5% 3

[12], the following variant of the problem. Instead of apply- P(S)~exd — (SW)7] @
ing a field(control parametey we set the depinning velocity
(order parameterto an infinitesimal valu¢14]. This is ac- 53 i ) i
complished by initially fixing the two ends of the polymer at for S at least of the order V™™, This constitutes our first
(x,=0y,=Yy) and X, =W,y,=Y). Since the two ordinates prediction. Its validity will be tested numerically in Sec. IV.
y1=Y,=Y are equal, we could consider the case where only
one end point is fixed while keeping the other one free,
therefore making this situation correspond to a polymer on
average twice as long but with both end points fixed. Alter- We now derive the distribution of avalanches in the large
natively, we may consider the polymer as wrapping itselfW limit for S smaller tharW®?.

II. DEFINITION OF THE MODEL

In this model, an avalanche gtis simply the transition

A. Large avalanche regime

B. Small avalanche regime
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FIG. 1. Typical set of optimal configurations for a RDP of len@it+ 4096 and for Gsy<1200:(a) global systenigray framed boxes
outline regions of succeeding plots such that the horizontal and vertical extensions of these boxes folld®) Eqgs.(8) with a~0.9], (b)
magnification of the largest box i@), (c) magnification of the largest box iffp) and (d) magnification of the box irfc). Note, that at each
grid point of the lattice we assign an independent random number drawn from an exponential distribution with unit mean and variance.

1. “Weak replica symmetry” breaking tween the end points of these optimal paths scale with path

. _ l . . .
First notice that the sequence of optimal paths with fan/€ngth X as Y~X?s with vs=3. This property is important
shaped families of end points strongly resembles the rankin, the understanding of our results as it suggests a hierar-

of paths by Zhang16]. He found that the differenc¥ be- hical structure. We thus briefly recall its derivation.
The Bethe ansatz with the replica trifk7] provides a

solution of the RDP problem in 41 dimensions. This
shows that the RDP problem is equivalent to solving a prob-
lem of n bosons in one spatial dimensions interacting with an
attractive s-function potential. In this framework, imposing
conditions on the end points of the RDP implies that the
Bethe ansatz wave function must incorporate the motion of
the center of mass of the bosons:

Y

y+1

1n
v~1/ ex X, —Xgl+— >, X2 |. 2
[ed S g2l o

The term (1mxg:1x§ represents the kinetic ard, g|x,
X —xg4| the potential energy. Since,~W?3, the kinetic en-
0 4 ergy ~W3, In the Bethe ansatz wave function, the potential

FIG. 2. Schematic representation of optimal RDPs fixed at thei€N€r9y mlll'lsst be comparable to the kinetic energy, fiys
two end points. An avalanche is defined by the eBespanned by _X,8|_~W , confirming thatvs=1/3. This scaling de_scrlbes
the transition from the optimal configurationyato y+1, i.e.,Sis  the distance between degenerate ground states with so-called
the area interior to the perimeter formed by the union of the twoweak replica symmetry breakind7]. Technically, there is a
optimal RDP configurations a¢ andy+1 and the two vertical replica symmetry breaking, but the distance between the de-
segmentg(0yy); (0y+1)) and ((W,y);(W,y+1)). The successive generate states becomes negligible compared to their intrin-
avalanches are represented in different gray scales. sic fluctuations in the thermodynamic limit.
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2. Sum rule derivation leading toN,< W31 A family of order 2 is by itself
Hwa [18] has pointed out that, given a power-law distri- composed of locally optimal paths that join after a distance
bution I,0cW*, obtained by the self-consistent condition that
Wzoclg/s. (6)
P(9~——. (3) _ _ _
S As a consequence, the generic area, i.e., the largest possible

_ ) avalanche, covered by this family of order(tramember
with an upper cutoff a6~W?®", a simple sum rule argument yansitions is S,oc | o~ WaW(ZIRa = (53)a
leads to the predictiop.=2/5. We take the sum rule to be Order n We infer that the relevant quantities of théh
order family depends only on the associated ones in the fam-
(S)= f SPS)dS=W (4  ily of ordern—1. This leads us to a recursive scheme for the
calculation of the above-introduced entities. In what follows

. . : we will formally define the simplest version of the iterative
since on an average the interface advances one step in the

L ; . " . system of equations and state its solutions.
direction every time the vertical position of the fixed end y q

S . o Within each of the families of ordem, we defineN,,
points is raised by one mesh unit. Substituting the truncated_ .. " : n+tl
power law(3) in Eq. (4) indeed yieldsu = 2/5. This predic- fiamnles of ordern+1, each of which has a characteristic

tion is verified numerically in Sec. IV (vertica) width w,,, 1. From the conservation of width, we
on is veritied numericatly ec. 1v. have by construction

In this simple sum rule argument, the exponent of the
assumed power law of E€B) is retrieved. We stress that this
is somewhat secondary to the key problem of justifying that

the distribution is indeed a power law. In what follows We The characteristic widthv, . , relates the generic distante

will show that the existence of a branching structure with,gar \which locally optimal path@vithin a family of ordem)
two or more length scales gives a robust power law indEpen{ypically join. It obeys

dently of the specific relationship governing the various
length scales. We thus believe that the construction below
provides a derivatioifalbeit nonrigorousof this power law.

Np+ 1Wny 1= Wy (7)

213
Wy =al@Pe, 8

However, the self-consistency condition relateg,, to
In+ 1,
We generalize the above observations to infer two trans-
verse length scalé&?® andW?3*, where 0<a<1 (the case Wni1=BIZ3, . 9)
a=1 is addressed separetely bejowo describe the hierar-
chical structure of RDP configurations as exemplified by FigWe are thus led to the direct recursion
1. Our results turn out to be independent of the choice.of
Intuitively, a family of width W% consists of families of lne1=Al7. (10)
width W32® each of which consists of families of smaller _ .
width and so or(down to the elemental scale of the mgsh The typical area covered by an avalanche among the families
The width, number, and other properties of these embeddeef ordern+1 is
sets of families can be obtained from the two length scales
W22 and W?3* using only dimension conservation and self- Sn+1= ClnsaWns.

similarity arguments. :
Order 1 The highest-order family, which we call of order HereA, a, B, andC are _(real Va.“.Jed constants. S[ncdal .
«\W, we also have an initial condition for the recursion. This

1, corresponds to all the locally optimal paths that are within .
a distance of ordew?? of the best path. The vertical width ' generalized as
of this family of order 1 isw;xW?3, This family is com-
posed of locally optimal paths that join after a distamge
«\W, obtained by the condition tha# e W??3 (this condition
will become nontrivial at lower levels of the hierarghifhe
generic area covered by this family S| ;w;~W>?3. This

3. A general hierarchical construction

11

l,=f(W). (12

Finally, we have for the total number of familigg,, ; up to
and including orden+1,

is also the typical size of the largest possible avalanche as Nos1=N, 1N, (13
defined above and corresponds to a transition between mem-
bers of this family of order 1. Ny=1. (14)

Order 2 Within this family of order 1, we defind\,
families of order 2, each of which has a characteristic widthy/e find from Eqs(10) and(12)
w,oc | ¥ WR)e |t s at this point that we have used the

second length scale introduced by the quasidegenerate F(W) a1
ground states. From the conservation(\adrtical) width, we l,=AV1=a)2 —) for n=1 (15)
have by construction Ac/(1-a)

NoWo =Wy, (5) and from Eq.(9) that
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2/3a" "t
Wy = BAZAL- %)( ) (16)
Together with Eq(7) we then get
FOW) (213)(1-a)a" "1
Npy1= W) 17
and from Eq.(12)
5/3)a" 1
S,=CB> A—fov)a))( | (18

The latter expression is conveniently turned into

.3 s, f(W)
o 1:3“’](w)/|n(m). (19)

For the cumulative number of families to orderi.e., Egs.
(13) and(14), we get with Eq.(17)

f(W)

Nn: Aa//(l—a/)

(213)(1-a"" 1)
) \ (20

which with Eq.(19) results in a direc§, andW dependence,

Ny=(CB)?f (W) 2 S3, (21)
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portional toA". Solving as a function of5,, we retrieve
exactly the expressio(22) for the distribution of avalanche
sizes.

This derivation is simpler because the hierarchical struc-
ture is exactly self-similar, with the same scaling ratio
throughout. This is in contrast to the cagec1 for which

Aocw@3e" (-0 decreases with increasing family order.
This derivation fore=1 and\>1 clarifies the origin of the
exponentu=2/5 stemming simply from =1+3/2, i.e.,
from the fundamental self-affine structure of the RDP with
transverse excursion exponent 2/3.

5. Other power laws and relation to other works

In sum, the prediction of Eq$22) and (23) is very gen-
eral and independent of the specific hierarchical structure of
the subdominant quasidegenerate ground states. Note that the
power-law distribution given by Eq(22) for the spanned
surfaces is associated with two other power laws, namely,
that for the distribution of typical transverse deviations
and that for the distribution of typical longitudinal deviations
|. This stems fron5~wl andw~1%3, leading to

dw
P(w)dw~ ——

g PO~

[1+ 2/3" (24)

As mentioned in Sec. I, our finding seems to be in disagree-
ment with the predicted valuéequal to zerp for the ava-
lanche size distribution in £1 dimensiong5—7]. Note that

all available analytical calculations of “equilibrium ava-

This reasoning, based on the hierarchical model, gives us tHanches” for dynamical models of charge density waves, in-
number of avalanches of specific sizes. To get the probabilityerfaces, and manifolds are done on the depinned side of the
density distribution, we have to divide this number by thecritical depinning transition, while the avalanche distribution

interval width fromS,, to S, 1, which is simply proportional
to S, up to a correction of ord%ﬁ‘1 as seen from Eq18).
Gathering all the pieces and assuming &) «W leads us

is usually studied on the other pinned state. Relating the
exponents on the two sides of the transition remains an open
problem. In any case, the avalanche regime studied in the

to the following prediction for the distribution of avalanche present paper is different from that previously investigated.

sizes:

2/3
P(S)d S~

ds (22

Sl+,u,
with an exponent

w=2/5. (23

The power law in Eq(22) describes the distribution of ava-

lanche sizes &S<Sg; (we defineSgx W) in the limit

W—oo. This upper scalé&g; corresponds to the maximum

Our regime consists of small and intermediate avalanches of
sizes up tdSs/3, Whereas the regime that contains avalanches
larger thanSs; yields a size distribution with a vanishing
exponent. The present work proposes a subdominant power-
law distribution of avalanches that originates in a hierarchi-
cal ordering of the almost equivalent degenerate states. Pre-
vious work has addressed the tail end of the avalanche
distribution and therefore has not been attentive to the pres-
ence of these states.

IV. NUMERICAL TESTS

typical sizes of the avalanches of order 1 in the hierarchy. The distribution of avalanche siz&has been determined

Notice that the prediction of Eq23) is independent of the

numerically by using a now standard transfer matrix method

value 0<a<1 and is thus robust with respect to the detailed[19] relying on the chain property applying to the energy

structure of the hierarchy.

4. The self-similar hierarchical case

A similar hierarchical structure can also be constructed

for «=1. In this case, it is postulated that,,;=w,/\,
whereA>1 is theconstantreduction factor from one level
of the hierarchy to the next. While keeping E@), this leads
to |, 1=1,/A%? and thus t0S,, ;=S,/\%? using Eq.(11).
The total number of families of order is now simply pro-

e(X1,Y1;X2,y2) of a RDP going from X;,y;) t0 (X2,Y2)
e(X1,Y1:X2,Y2) =minfe(xy,y: X",y ) +e(x",y";X2,y2) 1.
’ (25

Figure 3 shows the distribution of avalanche sizes obtained
numerically for system widths frondv=8 to 512. For each
width, we have calculated the RDP configurations and the
corresponding avalanche areas for system lengtkd (8
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FIG. 3. DistributionP(S) of RDP avalanche sizes obtained nu- 10-6- T T T T |
merically for system widths fronw=8 to 512 on a log-log plot. 0.0001 0.0010 0.0100 0.1000 1.0000
Here the system lengths are 2<10 (for W=8), 3x10°(W=16), WO

2Xx10'(W=32), 103(W=64), 2x 10°(W=128),5x 10'(W=256),

FIG. 4. P(S) as a function of the rescaled variat8&W®" for
W=8-512 on a log-log plot.

<L=2x10%. These very long systems provide reliable sta-

tistical estimates. In Fig. 3 the existence of a power law forp|0t: the sizeS,, Up to which the power law22) holds (as
the. distributionP(S) is quite apparent. The sizgginterval OVET found from Fig. 4, the characteristic siz8,,m, Of the bump
which the power law holds increases 3g;~W>*. Another = measured as the value of the inflection pointR(fS) (lo-
feature of Fig. 3 is the clear evidence of a characteristiGated in Fig. 3 and the size,,; beyond which the curves in
avalanche size, corresponding to the bump of the distribution;tig_ 6 are linear, thus qualifying Eq1). We show for com-

and 9x 10°(W=512).

in the region of large avalanche sizes. The location of theSSarison two straight lines of slopes 5/3 and 4/3 correspond-

bumps also scales &&;~W>"3,
Finite size effects turn out to be very important in this
problem and a careful finite size scaling analysis is appropri-

ate. We approach this as follows. 0'405 v_ o ' ' '

For each system size, we determine the expopdit/) \4

that best fits the numerical distribution. To demonstrate the ~ 0-30F AN g

guality of the fit, we replot Fig. 3 by showing in Fig.R(S) E A

as a function of the rescaled varialW®°?. For each size 0.20F v 3

W, a different exponent(W) is found. The dependence of A

©(W) as a function ofv~??is shown in Fig. 5. We finda 440k v 3

very good fit(“least squares) with the finite size equation £ A

0 E E

c = 0.00F . 3

M(W)=Mm—w—2,3, (26) _ -

-0.10F A 3

wherec=2.90 is a constant and,.=0.40. This is in excel- E .

lent agreement with the prediction 2/5. An apparent power- -0.20f E

law dependence of the exponenfW) on W as in Eq.(26) A

could result from fluctuations in the value afwithin each O30 S

level and across the different levels of the hierarchy. 0.00 005 0.10 1%/ 5 020 025 0.0

In Fig. 6 we represen®(s) for the different system sizes
as a function of the rescaled variat8/W®°. This choice of
variables is intended to test the prediction of Ef). We

ing to avalanche sizes that scale \&8”® and W*3, respec-

FIG. 5. Estimateq. dependence oW~ 23 Theseu values are
the result of a linear fit of B'*# to the linear portions in Fig. 4.

observe a rather convincing tendency for the plot to convergghe high, low, and midpoint estimates are indicatedvby/, and

to a straight line for large system sizes.

@, respectively. The straight line is the least-squares fit to the mid-

Finally, in Fig. 7 we have estimated th dependence of point values with the five largest system width&/£ 32, 64, 128,
three characteristic avalanche sizes in a double logarithmigs6, and 512 This line has been extended to thé—oe limit.
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FIG. 7. EstimatedV dependence of the three characteristic ava-
lanche sizesS,;,, the upper limit for whichP(S) seems well ap-
proximated by a power law, is judged from Fig. 4 to have high and
low values marked by/ and A, respectively(values taken at the
midpoint of the triangle’s horizontal sifleSy,m, () tracks the
location of the bump oP(S) and is here chosen as the position of
the inflection point of the different distributions displayed in Fig. 3.

rﬁa", (@) represents the lower limit of the linear domain of the
curves in Fig. 6. The solid lindproportional toW>3) and the
dashed lingproportional tow*3) are included as guides.

FIG. 6. P(s) for the different system sizes as a function of the
rescaled variabl&*/W®° on a semilogarithmic plot.

tively. The upper limit for the validity of the power law in
Eqg. (22 S,, seems to follow the scaling/*. This is to be
expected from the weak replica symmetry breaking argume
and corroborates Zhang's resfll6]. However, the two other
SiZ€SSyump and Sy both closely scale ad/®.

V. CONCLUSION . .
transverse length scal’?®. The other population comprises

We have proposed a quasistatically driven model that exthe “|large” avalanches beyond this typical transverse excur-
hibits responses similar to those of SOC models. This mod&ijgn w23
of a succession of optimal RDP configurations exhibits a Qur results are related to the power-law distribution of
power-law distribution of the area swept by a polymer be-groplets(nearly degenerate ground statésund in[20] us-
tween two successive optimal configuratiddgfined as an  jng the mode-coupling approximation. “Droplets” constitute
avalanchg disordered analogs of the Goldstone modes, and these are
Based on the existence of two fundamental sc&188  responsible for the large-scale low-energy fluctuations. This
andW?3*(0< a=<1) for the transverse fluctuations of a RDP result was derived as a consequence of the statistical Gal-
of lengthW, we have constructed a hierarchical representajjiean symmetry of RDPs.
tion of the set of quasidegenerate optimal configurations.
This hierarchy allow us to calculate explicitly the exponent
of the avalanche distribution. ACKNOWLEDGMENTS
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