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Self-organized critical random directed polymers
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We uncover a nontrivial signature of the hierarchical structure of quasidegenerate random directed polymers
~RDPs! at zero temperature in (111)-dimensional lattices. Using a cylindrical geometry with circumference
8<W<512, we study the differences in configurations taken by RDPs forced to pass through points displaced
successively by one unit lattice mesh. The transition between two successive configurations~interpreted as an
avalanche! defines an areaS. The distribution of moderately sized avalanches is found to be a power law
P(S)dS;S2(11m)dS. Using a hierarchical formulation based on the length scalesW2/3 ~transverse excursion!
and the distanceW(2/3)a between quasidegenerate ground states~with 0,a<1), we determinem5

2
5, in

excellent agreement with numerical simulations by a transfer matrix method. This power law is valid up to a
maximum sizeS5/3;W5/3. There is another population of avalanches that for characteristic sizes beyondS5/3,
obeysP(S)dS;exp@2(S/S5/3)

3#dS, also confirmed numerically. The first population corresponds to almost
degenerate ground states, providing a direct evidence of ‘‘weak replica symmetry breaking,’’ while the second
population is associated with different optimal states separated by the typical fluctuationW2/3 of a single RDP.
@S1063-651X~98!12806-4#

PACS number~s!: 05.70.Jk, 64.60.Lx, 75.50.Lk, 64.60.Ht
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I. INTRODUCTION

Self-organized criticality ~SOC! @1# describes out-of-
equilibrium extended systems driven infinitely slowly, whic
respond intermittently with avalanches or bursts of sizes
tributed according to power-law distributions. A close re
tionship between critical phase transitions and a class
SOC systems@2,3# has been pointed out. Member systems
this SOC class operate exactly at the critical value of
underlying critical point. A necessary condition for this
occur is that theorder parameter~often akin to a flux! of a
dynamical critical transition be driven infinitely slowly, thu
forcing the control parameter to readjust itself dynamica
around its critical value@3#.

Motivated by this correspondence, we introduce a diff
ent SOC model. It can be described as anequilibriumdepin-
ning problem wherein a certain type of avalanche separ
local equilibrium states. The succession of equilibrium st
transitions found in our model resembles the behavior
Abelian sandpiles@4#. In the latter, each avalanche can
shown to connect two different microscopic metasta
states. Furthermore, its critical state is then characterize
the complete set of these avalanche-connected metas
states. Whereas the set of coexisting metastable stabl
created by the threshold rules of the sandpile automata
many coexisting localequilibrium states appearing in ou
model emerge from an optimal~i.e., minimum energy! con-
figuration in a quenched random landscape. This diso
induces the coexistence of an extremely large number o
most equivalent configurations. The resulting closenes
energy space leads to a large spread in configuration sp
571063-651X/98/57~6!/6936~8!/$15.00
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This turns out to produce a power-law distribution for t
interconnecting avalanches.

Thus a common property of SOC systems is that they
characterized by a large set of almost equivalent and de
erate states. This set can be generated by dynamic auto
rules, disorder, frustration, or other mechanisms. In addit
to the introduction of a different class of SOC models, o
results provide further evidence for the hierarchical struct
of sets of random directed polymers~RDPs!.

Our results bear an apparent strong similarity to tho
previously obtained for pinned charged density waves@5#,
driven interfaces in random media@6#, and elastic manifolds
on disordered substrates@7#. However, the connection be
tween the dynamic critical phenomena obtained from a c
stant driving forceF at the depinning thresholdFc and the
nearly critical behavior obtained by a small constant veloc
drive is based on an argument relating the critical behav
asF→Fc

1 andF→Fc
2 . This predicts@5–7# a vanishing ex-

ponent for the avalanche distribution in our~111!-
dimensional case, which seemingly contradicts our res
The discrepancy stems from the fact that we do not desc
the same regime; the vanishing exponent refers to the e
tence of large avalanches of sizes controlled by the sys
size ~or the correlation length when off criticality applies!.
This corresponds to the second of two identified avalan
regimes of our model. In contrast, the present work reve
the existence of a subdominant power-law distribution
avalanches stemming from the hierarchy of almost equ
lent degenerate states. These states do not, however, co
ute to the large-scale behavior and have thus been o
looked in previous work.

The model is defined in the next section, while in Sec.
6936 © 1998 The American Physical Society
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57 6937SELF-ORGANIZED CRITICAL RANDOM DIRECTED POLYMERS
we derive our theoretical predictions for the distribution
avalanche sizes. These are compared with extensive num
cal simulations in Sec. IV. Our conclusions are found in S
V.

II. DEFINITION OF THE MODEL

Consider a RDP on a square lattice oriented at 45° w
respect to thex axis and such that each bond carries a r
dom number, interpreted as an energy. An arbitrary direc
path~a condition of no backward turn! along thex direction
and of lengthW ~in this direction! corresponds to the con
figuration of a RDP ofW bonds. In the zero-temperatur
version we study here, the equilibrium polymer configurat
is the particular directed path on this lattice that~in the pres-
ence of given boundary conditions! minimizes the sum of the
W bond energies along it. This simple model, with its grea
varied behavior, has become a valuable tool in the stud
self-similar surface growths@8#, interface fluctuations and
depinning@9#, the random stirred Burgers equation in flu
dynamics@10#, and the physics of spin glasses@11#.

Let us apply a fieldh that exerts a force on one of th
vertical end-point positionsy(W) of the polymer. This field
adds a term2hy(W) to the configurational energy of th
polymer given by the sum of random bond energies along
It is similar to a transverse electric field acting on t
charged head of the polymer. If the other polymer extrem
is free, the minimum energy is obtained by lettingy(W) go
to infinity as the external field term2hy(W) diverges to
2`. This energy always dominates the configuration ene
for any reasonable distribution of random bond energies
depinning transition thus occurs for the valueh501 of the
control parameterh. Mézard@12# has shown that holding th
other end point fixed results~in the small field limit! in ex-
tremely jerky displacement of the charged head as a func
of the field strengthh. The position of the charged head
stationary for large ranges of applied field values and t
changes suddenly. At the field values where these transit
~or avalanches! occur, the susceptibility attains large value
These susceptibility bursts are reportedly distributed acc
ing to a power law@12#. This avalanche response has be
attributed@12# to a ‘‘spin glass phase’’ with several valley
of similar energy. It is important to realize that this av
lanche behavior is not SOC as the driving is nonstationa
nothing occurs when the field stays constant and increa
the field will lead ultimately to the situation where the RD
is blocked in a fully extended configuration along the fi
quadrant bisectrix. This regime is similar to a mode of o
eration with a slow sweeping of a control parameter@13#.

The correspondence between depinning transitions
SOC models@3# suggests, in addition to the previous resu
@12#, the following variant of the problem. Instead of appl
ing a field~control parameter!, we set the depinning velocity
~order parameter! to an infinitesimal value@14#. This is ac-
complished by initially fixing the two ends of the polymer
(x150,y15y) and (x25W,y25y). Since the two ordinates
y15y25y are equal, we could consider the case where o
one end point is fixed while keeping the other one fr
therefore making this situation correspond to a polymer
average twice as long but with both end points fixed. Alt
natively, we may consider the polymer as wrapping its
f
ri-
.
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around a cylinder of circumferenceW. The polymer is al-
lowed to equilibrate, i.e., take the spatial configuration
minimum total bond energy. Let us now shift the vertic
position of the fixed end points fromy to y11 ~where the
lattice mesh is taken as unity!. The polymer is again allowed
to equilibrate to the spatial configuration of minimum e
ergy. We continue in this fashion in an iterative proce
which amounts to controlling the average vertical velocity
the polymer to a value so small that the time scale to m
over a unit mesh is much larger than any relaxation tim
This guarantees that the polymer always finds the spa
configuration of minimum bond energy. Note that they po-
sition of the polymer end points therefore functions as
clock since no other relevant time scales are present.

Figure 1 shows a typical set of optimal configurations
a RDP of lengthW54096 and for 0<y<L51200. The
magnifications illustrate the self-affine structure of the RD
and the self-similar hierarchical pattern of the local bran
ing structure.

III. THEORETICAL PREDICTION
OF THE AVALANCHE SIZE DISTRIBUTION

In this model, an avalanche aty is simply the transition
from the optimal configuration of a RDP with end poin
fixed at y15y25y to the optimal configuration where th
end points are now aty15y25y11 ~as shown in Fig. 2!.
We define the size of an avalanche by the areaS spanned by
the transition from the optimal configuration aty to the one
at y11, i.e.,S is the area interior to the perimeter formed b
the union of the two optimal RDP configurations aty and
y11 and the two vertical segments,„(0,y);(0,y11)… and
„(W,y);(W,y11)… ~see Fig. 2!. What do we know about the
distribution of these avalanche sizes?

A. Large avalanche regime

Clearly, the structure of the ensemble of the optim
RDPs~for all possible end-pointy locations! uniquely deter-
mines the avalanches. For a RDP of lengthW, it is known
that the typical transverse excursionY in 111 dimensions
scales asY;Wn with n5 2

3 ~see@15# and references therein!.
We thus expect that there exists a class of RDP transit
with vertical lengthsY of at least the order of this typica
transverse excursion. The areaS spanned by such a transitio
is therefore proportional toS.WY;W5/3 ~i.e., the charac-
teristic avalanche size!. The distribution ofY is known to
behave asymptotically asP(Y);exp@2(Y/W2/3)3# @15#. Sub-
tituting for S.WY in P(Y) give us

P~S!;exp@2~S/W5/3!3# ~1!

for S at least of the order ofW5/3. This constitutes our first
prediction. Its validity will be tested numerically in Sec. IV

B. Small avalanche regime

We now derive the distribution of avalanches in the lar
W limit for S smaller thanW5/3.
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FIG. 1. Typical set of optimal configurations for a RDP of lengthW54096 and for 0<y<1200:~a! global system@gray framed boxes
outline regions of succeeding plots such that the horizontal and vertical extensions of these boxes follow Eqs.~10! and~8! with a'0.9#, ~b!
magnification of the largest box in~a!, ~c! magnification of the largest box in~b! and~d! magnification of the box in~c!. Note, that at each
grid point of the lattice we assign an independent random number drawn from an exponential distribution with unit mean and va
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1. ‘‘Weak replica symmetry’’ breaking

First notice that the sequence of optimal paths with f
shaped families of end points strongly resembles the ran
of paths by Zhang@16#. He found that the differenceY be-

FIG. 2. Schematic representation of optimal RDPs fixed at th
two end points. An avalanche is defined by the areaS spanned by
the transition from the optimal configuration aty to y11, i.e.,S is
the area interior to the perimeter formed by the union of the t
optimal RDP configurations aty and y11 and the two vertical
segments„(0,y);(0,y11)… and„(W,y);(W,y11)…. The successive
avalanches are represented in different gray scales.
-
g

tween the end points of these optimal paths scale with p
length X as Y;Xns with ns5

1
3. This property is important

for the understanding of our results as it suggests a hie
chical structure. We thus briefly recall its derivation.

The Bethe ansatz with the replica trick@17# provides a
solution of the RDP problem in 111 dimensions. This
shows that the RDP problem is equivalent to solving a pr
lem of n bosons in one spatial dimensions interacting with
attractived-function potential. In this framework, imposin
conditions on the end points of the RDP implies that t
Bethe ansatz wave function must incorporate the motion
the center of mass of then bosons:

C;1Y expS (
a,b

uxa2xbu1
1

W(
a51

n

xa
2 D . ~2!

The term (1/W)(a51
n xa

2 represents the kinetic and(a,buxa

2xbu the potential energy. Sincexa;W2/3, the kinetic en-
ergy;W1/3. In the Bethe ansatz wave function, the potent
energy must be comparable to the kinetic energy, thusuxa
2xbu;W1/3, confirming thatns51/3. This scaling describe
the distance between degenerate ground states with so-c
weak replica symmetry breaking@17#. Technically, there is a
replica symmetry breaking, but the distance between the
generate states becomes negligible compared to their in
sic fluctuations in the thermodynamic limit.
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2. Sum rule derivation

Hwa @18# has pointed out that, given a power-law dist
bution

P~S!;
1

S11m
, ~3!

with an upper cutoff atS;W5/3, a simple sum rule argumen
leads to the predictionm52/5. We take the sum rule to be

^S&5E SP~S!dS5W ~4!

since on an average the interface advances one step iny
direction every time the vertical position of the fixed e
points is raised by one mesh unit. Substituting the trunca
power law~3! in Eq. ~4! indeed yieldsm52/5. This predic-
tion is verified numerically in Sec. IV.

In this simple sum rule argument, the exponent of
assumed power law of Eq.~3! is retrieved. We stress that th
is somewhat secondary to the key problem of justifying t
the distribution is indeed a power law. In what follows w
will show that the existence of a branching structure w
two or more length scales gives a robust power law indep
dently of the specific relationship governing the vario
length scales. We thus believe that the construction be
provides a derivation~albeit nonrigorous! of this power law.

3. A general hierarchical construction

We generalize the above observations to infer two tra
verse length scalesW2/3 andW2/3a, where 0,a<1 ~the case
a51 is addressed separetely below!, to describe the hierar
chical structure of RDP configurations as exemplified by F
1. Our results turn out to be independent of the choice oa.
Intuitively, a family of width W(2/3)a consists of families of
width W(2/3)a2

, each of which consists of families of smalle
width and so on~down to the elemental scale of the mes!.
The width, number, and other properties of these embed
sets of families can be obtained from the two length sca
W2/3 andW2/3a using only dimension conservation and se
similarity arguments.

Order 1. The highest-order family, which we call of orde
1, corresponds to all the locally optimal paths that are wit
a distance of orderW2/3 of the best path. The vertical widt
of this family of order 1 isw1}W2/3. This family is com-
posed of locally optimal paths that join after a distancel 1

}W, obtained by the condition thatl 1
2/3}W2/3 ~this condition

will become nontrivial at lower levels of the hierarchy!. The
generic area covered by this family isS1} l 1w1;W5/3. This
is also the typical size of the largest possible avalanche
defined above and corresponds to a transition between m
bers of this family of order 1.

Order 2. Within this family of order 1, we defineN2
families of order 2, each of which has a characteristic wi
w2} l 1

(2/3)a;W(2/3)a. It is at this point that we have used th
second length scale introduced by the quasidegene
ground states. From the conservation of~vertical! width, we
have by construction

N2w25w1 , ~5!
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leading toN2}W(2/3)(12a). A family of order 2 is by itself
composed of locally optimal paths that join after a distan
l 2}Wa, obtained by the self-consistent condition that

w2} l 2
2/3. ~6!

As a consequence, the generic area, i.e., the largest pos
avalanche, covered by this family of order 2~intramember
transitions! is S2} l 2w2;WaW(2/3)a5W(5/3)a.

Order n. We infer that the relevant quantities of thenth
order family depends only on the associated ones in the f
ily of order n21. This leads us to a recursive scheme for t
calculation of the above-introduced entities. In what follow
we will formally define the simplest version of the iterativ
system of equations and state its solutions.

Within each of the families of ordern, we defineNn11
families of ordern11, each of which has a characterist
~vertical! width wn11. From the conservation of width, w
have by construction

Nn11wn115wn . ~7!

The characteristic widthwn11 relates the generic distancel n
after which locally optimal paths~within a family of ordern)
typically join. It obeys

wn115aln
~2/3!a . ~8!

However, the self-consistency condition relateswn11 to
l n11,

wn115Bln11
2/3 . ~9!

We are thus led to the direct recursion

l n115Aln
a . ~10!

The typical area covered by an avalanche among the fam
of ordern11 is

Sn115Cln11wn11 . ~11!

Here A, a, B, and C are ~real valued! constants. Sincel 1
}W, we also have an initial condition for the recursion. Th
is generalized as

l 15 f ~W!. ~12!

Finally, we have for the total number of familiesNn11 up to
and including ordern11,

Nn115Nn11Nn , ~13!

N151. ~14!

We find from Eqs.~10! and ~12!

l n5A1/~12a!2S f ~W!

Aa/~12a!D an21

for n>1 ~15!

and from Eq.~9! that
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6940 57PER JÖGI AND DIDIER SORNETTE
wn5BA2/3~12a!S f ~W!

Aa/~12a!D ~2/3!an21

. ~16!

Together with Eq.~7! we then get

Nn115S f ~W!

Aa/~12a!D ~2/3!~12a!an21

~17!

and from Eq.~11!

Sn5CB5/3~12a!S f ~W!

Aa/~12a!D ~5/3!an21

. ~18!

The latter expression is conveniently turned into

an215
3

5
lnS Sn

CBA5/3~12a!D Y lnS f ~W!

Aa/~12a!D . ~19!

For the cumulative number of families to ordern, i.e., Eqs.
~13! and ~14!, we get with Eq.~17!

Nn5S f ~W!

Aa/~12a!D ~2/3!~12an21!

, ~20!

which with Eq.~19! results in a directSn andW dependence

Nn5~CB!2/5f ~W!2/3/Sn
2/5. ~21!

This reasoning, based on the hierarchical model, gives us
number of avalanches of specific sizes. To get the probab
density distribution, we have to divide this number by t
interval width fromSn to Sn11, which is simply proportional
to Sn up to a correction of orderSn

a21 as seen from Eq.~18!.
Gathering all the pieces and assuming thatf (W)}W leads us
to the following prediction for the distribution of avalanch
sizes:

P~S!dS}
W2/3

S11m
dS, ~22!

with an exponent

m52/5. ~23!

The power law in Eq.~22! describes the distribution of ava
lanche sizes 1<S<S5/3 ~we defineS5/3}W5/3) in the limit
W→`. This upper scaleS5/3 corresponds to the maximum
typical sizes of the avalanches of order 1 in the hierarc
Notice that the prediction of Eq.~23! is independent of the
value 0,a,1 and is thus robust with respect to the detai
structure of the hierarchy.

4. The self-similar hierarchical case

A similar hierarchical structure can also be construc
for a51. In this case, it is postulated thatwn115wn /l,
wherel.1 is theconstantreduction factor from one leve
of the hierarchy to the next. While keeping Eq.~7!, this leads
to l n115 l n /l3/2 and thus toSn115Sn /l5/2 using Eq.~11!.
The total number of families of ordern is now simply pro-
he
ty

y.

d

portional to ln. Solving as a function ofSn , we retrieve
exactly the expression~22! for the distribution of avalanche
sizes.

This derivation is simpler because the hierarchical str
ture is exactly self-similar, with the same scaling ratiol
throughout. This is in contrast to the casea,1 for which
l}w(2/3)an21(12a) decreases with increasing family orde
This derivation fora51 andl.1 clarifies the origin of the
exponentm52/5 stemming simply from 1/m5113/2, i.e.,
from the fundamental self-affine structure of the RDP w
transverse excursion exponent 2/3.

5. Other power laws and relation to other works

In sum, the prediction of Eqs.~22! and ~23! is very gen-
eral and independent of the specific hierarchical structure
the subdominant quasidegenerate ground states. Note tha
power-law distribution given by Eq.~22! for the spanned
surfaces is associated with two other power laws, nam
that for the distribution of typical transverse deviationsw
and that for the distribution of typical longitudinal deviation
l . This stems fromS;wl andw; l 2/3, leading to

P~w!dw;
dw

w111
, P~ l !dl;

dl

l 112/3
. ~24!

As mentioned in Sec. I, our finding seems to be in disagr
ment with the predicted value~equal to zero! for the ava-
lanche size distribution in 111 dimensions@5–7#. Note that
all available analytical calculations of ‘‘equilibrium ava
lanches’’ for dynamical models of charge density waves,
terfaces, and manifolds are done on the depinned side o
critical depinning transition, while the avalanche distributi
is usually studied on the other pinned state. Relating
exponents on the two sides of the transition remains an o
problem. In any case, the avalanche regime studied in
present paper is different from that previously investigat
Our regime consists of small and intermediate avalanche
sizes up toS5/3, whereas the regime that contains avalanc
larger thanS5/3 yields a size distribution with a vanishin
exponent. The present work proposes a subdominant po
law distribution of avalanches that originates in a hierarc
cal ordering of the almost equivalent degenerate states.
vious work has addressed the tail end of the avalan
distribution and therefore has not been attentive to the p
ence of these states.

IV. NUMERICAL TESTS

The distribution of avalanche sizesS has been determine
numerically by using a now standard transfer matrix meth
@19# relying on the chain property applying to the ener
e(x1 ,y1 ;x2 ,y2) of a RDP going from (x1 ,y1) to (x2 ,y2)

e~x1 ,y1 ;x2 ,y2!5min
y8

@e~x1 ,y1 ;x8,y8!1e~x8,y8;x2 ,y2!#.

~25!

Figure 3 shows the distribution of avalanche sizes obtai
numerically for system widths fromW58 to 512. For each
width, we have calculated the RDP configurations and
corresponding avalanche areas for system lengths 33106
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<L<23108. These very long systems provide reliable s
tistical estimates. In Fig. 3 the existence of a power law
the distributionP(S) is quite apparent. The size interval ov
which the power law holds increases asS5/3;W5/3. Another
feature of Fig. 3 is the clear evidence of a characteri
avalanche size, corresponding to the bump of the distribu
in the region of large avalanche sizes. The location of th
bumps also scales asS5/3;W5/3.

Finite size effects turn out to be very important in th
problem and a careful finite size scaling analysis is appro
ate. We approach this as follows.

For each system size, we determine the exponentm(W)
that best fits the numerical distribution. To demonstrate
quality of the fit, we replot Fig. 3 by showing in Fig. 4P(S)
as a function of the rescaled variableS/W5/3. For each size
W, a different exponentm(W) is found. The dependence o
m(W) as a function ofW22/3 is shown in Fig. 5. We find a
very good fit~‘‘least squares’’! with the finite size equation

m~W!5m`2
c

W2/3
, ~26!

wherec52.90 is a constant andm`50.40. This is in excel-
lent agreement with the prediction 2/5. An apparent pow
law dependence of the exponentm(W) on W as in Eq.~26!
could result from fluctuations in the value ofa within each
level and across the different levels of the hierarchy.

In Fig. 6 we representP(s) for the different system size
as a function of the rescaled variableS3/W5. This choice of
variables is intended to test the prediction of Eq.~1!. We
observe a rather convincing tendency for the plot to conve
to a straight line for large system sizes.

Finally, in Fig. 7 we have estimated theW dependence o
three characteristic avalanche sizes in a double logarith

FIG. 3. DistributionP(S) of RDP avalanche sizes obtained n
merically for system widths fromW58 to 512 on a log-log plot.
Here the system lengthsL are 23107 ~for W58!, 33106~W516!,
23107~W532!, 108(W564), 23108(W5128),53107(W5256),
and 93106(W5512).
-
r

ic
n
e

i-

e

r-

e

ic

plot: the sizeSup up to which the power law~22! holds ~as
found from Fig. 4!, the characteristic sizeSbump of the bump
measured as the value of the inflection point ofP(S) ~lo-
cated in Fig. 3!, and the sizeStail beyond which the curves in
Fig. 6 are linear, thus qualifying Eq.~1!. We show for com-
parison two straight lines of slopes 5/3 and 4/3 correspo
ing to avalanche sizes that scale asW5/3 and W4/3, respec-

FIG. 4. P(S) as a function of the rescaled variableS/W5/3 for
W58 –512 on a log-log plot.

FIG. 5. Estimatedm dependence onW22/3. Thesem values are
the result of a linear fit of 1/S11m to the linear portions in Fig. 4.
The high, low, and midpoint estimates are indicated by,, n, and
d, respectively. The straight line is the least-squares fit to the m
point values with the five largest system widths (W532, 64, 128,
256, and 512!. This line has been extended to theW→` limit.
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6942 57PER JÖGI AND DIDIER SORNETTE
tively. The upper limit for the validity of the power law in
Eq. ~22! Sup seems to follow the scalingW4/3. This is to be
expected from the weak replica symmetry breaking argum
and corroborates Zhang’s result@16#. However, the two other
sizesSbump andStail both closely scale asW5/3.

V. CONCLUSION

We have proposed a quasistatically driven model that
hibits responses similar to those of SOC models. This mo
of a succession of optimal RDP configurations exhibits
power-law distribution of the area swept by a polymer b
tween two successive optimal configurations~defined as an
avalanche!.

Based on the existence of two fundamental scalesW2/3

andW2/3a(0,a<1) for the transverse fluctuations of a RD
of lengthW, we have constructed a hierarchical represen
tion of the set of quasidegenerate optimal configuratio
This hierarchy allow us to calculate explicitly the expone
of the avalanche distribution.

Our numerical analysis confirms the existence of two d
tinct populations of avalanches. One of these populati
consists of ‘‘small’’ avalanches that are distributed accord
to a power law with an upper cutoff controlled by the typic

FIG. 6. P(s) for the different system sizes as a function of t
rescaled variableS3/W5 on a semilogarithmic plot.
nt

x-
el
a
-

-
s.
t

-
s

g
l

transverse length scaleW2/3. The other population comprise
the ‘‘large’’ avalanches beyond this typical transverse exc
sion W2/3.

Our results are related to the power-law distribution
droplets~nearly degenerate ground states! found in @20# us-
ing the mode-coupling approximation. ‘‘Droplets’’ constitu
disordered analogs of the Goldstone modes, and these
responsible for the large-scale low-energy fluctuations. T
result was derived as a consequence of the statistical
ilean symmetry of RDPs.
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FIG. 7. EstimatedW dependence of the three characteristic a
lanche sizes.Sup, the upper limit for whichP(S) seems well ap-
proximated by a power law, is judged from Fig. 4 to have high a
low values marked by, and n, respectively~values taken at the
midpoint of the triangle’s horizontal side!. Sbump (h) tracks the
location of the bump ofP(S) and is here chosen as the position
the inflection point of the different distributions displayed in Fig.
Stail , (d) represents the lower limit of the linear domain of th
curves in Fig. 6. The solid line~proportional toW5/3) and the
dashed line~proportional toW4/3) are included as guides.
n
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